Monthly Archives: September 2017

Algo-rhythmic PianoAI

It’s no secret that we love music projects at Pi Towers. On the contrary, we often shout it from the rooftops like we’re in Moulin Rouge! But the PianoAI project by Zack left us slack-jawed: he built an AI on a Raspberry Pi that listens to his piano playing, and then produces improvised, real-time accompaniment.

Jamming with PIanoAI (clip #1) (Version 1.0)

Another example of a short teaching and then jamming with piano with a version I’m more happy with. I have to play for the Pi for a little while before the Pi has enough data to make its own music.

The PianoAI

Inspired by a story about jazz musician Dan Tepfer, Zack set out to create an AI able to imitate his piano-playing style in real time. He began programming the AI in Python, before starting over in the open-source programming language Go.

The Go language gopher mascot with headphones and a MIDI keyboard

The Go mascot is a gopher. Why not?

Zack has published an excellent write-up of how he built PianoAI. It’s a very readable account of the progress he made and the obstacles he had to overcome while writing PianoAI, and it includes more example videos. It’s hard to add anything to Zack’s own words, so I shan’t try.

Paper notes for PianoAI algorithm

Some of Zack’s notes for his AI

If you just want to try out PianoAI, head over to his GitHub. He provides a detailed guide that talks you through how to implement and use it.

Music to our ears

The Raspberry Pi community never fails to amaze us with their wonderful builds, not least when it comes to musical ones. Check out this cool-looking synth by Toby Hendricks, this geometric instrument by David Sharples, and this pyrite-disc-reading music player by Dmitry Morozov. Aren’t they all splendid? And the list goes on and on

Which instrument do you play? The recorder? The ocarina? The jaw harp? Could you create an AI like Zack’s for it? Let us know in the comments below, and share your builds with us via social media.

The post Algo-rhythmic PianoAI appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2kaaOie
via IFTTT

MagPi 62: become a LEGO master builder

Hi folks, Rob here from The MagPi. I’m excited to introduce to you all issue 62 of The MagPi, in which we go block crazy with LEGO! This month’s magazine is brimming with 14 pages of magnificent Raspberry Pi projects using these ubiquitous building blocks.

LEGO of everything and get one from the shops right now!

LEGO + Raspberry Pi

In our cover feature you’ll find fun tutorials from our friends at Dexter Industries, such as a Rubik’s cube-solving robot and a special automaton that balances on two wheels. We also show you how to build a retro console case for your Pi out of LEGO, and we have eight other projects to inspire you to make your own incredible brick creations.

Weekend fun

Back at school and looking for a weekend distraction? Check out our weekend projects feature, and build yourself a smart fridge or a door trigger that plays your theme song as you enter the room! Mine is You’re Welcome from Moana. What’s yours?

We have a ton of other wonderful projects, tutorials, and reviews in this issue as well, including a GIF camera, a hydroponic garden, and a Halloween game!

MagPi 62 Halloween game article

You can’t escape our annual spooktacular puns. That would be impossi-ghoul.

Get The MagPi 62

Grab the latest issue of The MagPi from WH Smith, Tesco, Sainsbury’s, and Asda. If you live in the US, check out your local Barnes & Noble or Micro Center over the next few days. You can also get the new issue online from our store, or digitally via our Android or iOS app. And don’t forget, there’s always the free PDF as well.

Subscribe for free goodies

Some of you have asked me about the goodies that we give out to subscribers. This is how it works: if you take out a twelve-month print subscription to The MagPi, you’ll get a Pi Zero W, Pi Zero case, and adapter cables absolutely free! This offer does not currently have an end date.

Pre-order AIY Projects kits

We have news about the AIY Projects voice kit! Micro Center has opened pre-orders for the kits in the US, and Pi Hut will soon be accepting pre-orders in the UK. Pimoroni has set up a notification service in case you want to know when you can pre-order more stock from them.

Now go enjoy building some fun LEGO Pi projects, and we’ll see you next month!

The post MagPi 62: become a LEGO master builder appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2xMuw97
via IFTTT

The possibilities of the Sense HAT

Did you realise the Sense HAT has been available for over two years now? Used by astronauts on the International Space Station, the exact same hardware is available to you on Earth. With a new Astro Pi challenge just launched, it’s time for a retrospective/roundup/inspiration post about this marvellous bit of kit.

Sense HAT attached to Pi and power cord

The Sense HAT on a Pi in full glory

The Sense HAT explained

We developed our scientific add-on board to be part of the Astro Pi computers we sent to the International Space Station with ESA astronaut Tim Peake. For a play-by-play of Astro Pi’s history, head to the blog archive.

Astro Pi logo with starry background

Just to remind you, this is all the cool stuff our engineers have managed to fit onto the HAT:

  • A gyroscope (sensing pitch, roll, and yaw)
  • An accelerometer
  • A magnetometer
  • Sensors for temperature, humidity, and barometric pressure
  • A joystick
  • An 8×8 LED matrix

You can find a roundup of the technical specs here on the blog.

How to Sense HAT

It’s easy to begin exploring this device: take a look at our free Getting started with the Sense HAT resource, or use one of our Code Club Sense HAT projects. You can also try out the emulator, available offline on Raspbian and online on Trinket.

Sense HAT emulator on Trinket

The Sense HAT emulator on trinket.io

Fun and games with the Sense HAT

Use the LED matrix and joystick to recreate games such as Pong or Flappy Bird. Of course, you could also add sensor input to your game: code an egg drop game or a Magic 8 Ball that reacts to how the device moves.

Sense HAT Random Sparkles

Create random sparkles on the Sense HAT

Once December rolls around, you could brighten up your home with a voice-controlled Christmas tree or an advent calendar on your Sense HAT.

If you like the great outdoors, you could also use your Sense HAT to recreate this Hiking Companion by Marcus Johnson. Take it with you on your next hike!

Art with the Sense HAT

The LED matrix is perfect for getting creative. To draw something basic without having to squint at a Python list, use this app by our very own Richard Hayler. Feeling more ambitious? The MagPi will teach you how to create magnificent pixel art. Ben Nuttall has created this neat little Python script for displaying a photo taken by the Raspberry Pi Camera Module on the Sense HAT.

Brett Haines Mathematica on the Sense HAT

It’s also possible to incorporate Sense HAT data into your digital art! The Python Turtle module and the Processing language are both useful tools for creating beautiful animations based on real-world information.

A Sense HAT project that also uses this principle is Giorgio Sancristoforo’s Tableau, a ‘generative music album’. This device creates music according to the sensor data:

Tableau Generative Album

“There is no doubt that, as music is removed by the phonographrecord from the realm of live production and from the imperative of artistic activity and becomes petrified, it absorbs into itself, in this process of petrification, the very life that would otherwise vanish.”

Science with the Sense HAT

This free Essentials book from The MagPi team covers all the Sense HAT science basics. You can, for example, learn how to measure gravity.

Cropped cover of Experiment with the Sense HAT book

Our online resource shows you how to record the information your HAT picks up. Next you can analyse and graph your data using Mathematica, which is included for free on Raspbian. This resource walks you through how this software works.

If you’re seeking inspiration for experiments you can do on our Astro Pis Izzy and Ed on the ISS, check out the winning entries of previous rounds of the Astro Pi challenge.

Thomas Pesquet with Ed and Izzy

Thomas Pesquet with Ed and Izzy

But you can also stick to terrestrial scientific investigations. For example, why not build a weather station and share its data on your own web server or via Weather Underground?

Your code in space!

If you’re a student or an educator in one of the 22 ESA member states, you can get a team together to enter our 2017-18 Astro Pi challenge. There are two missions to choose from, including Mission Zero: follow a few guidelines, and your code is guaranteed to run in space!

The post The possibilities of the Sense HAT appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2ysY88y
via IFTTT

Vinyl Shelf Finder

It is a truth universally acknowledged that a person in possession of a large record collection must be in want of a good shelving system. Valentin Galea has solved this problem by developing the Vinyl Shelf Finder. In this build, a web-based app directs a pan-and-tilt laser to point out your record of choice among your collection.

Vinyl Shelf Finder demo by Valentin Galea

Ta-dah!

Collector’s issues

People love to collect stuff. Stamps; soap bars; Troll dolls; belly button fluff (no, really); if you can think of a tangible item, someone out there in the world is collecting it. Of course, every collector needs to solve two issues — which system to use for cataloguing and sorting their collection, and how to best retrieve items from it. This is where Valentin’s Vinyl Shelf Finder comes in. He says:

My vinyl collection is pretty modest — about 500 records in one vertical shelf and a couple of boxes. This is enough to get cumbersome when I’m searching for specific stuff, so I came up with the idea of a automated laser pointer finder.

The Vinyl Shelf Finder

Valentin keeps an online record of his vinyl collection using Discogs. He entered each LP’s shelf position into the record, and wrote a Node.js app to access the Discogs database. The mobile app has a GUI from which he chooses records based on their name and cover image. To build the hardware, he mounted a Pimoroni Pan-Tilt HAT on a Raspberry Pi, and affixed a laser pointer to the HAT. When he selects a record in the app, the pan-and-tilt laser moves to point out the LP’s location.

Valentin Galea on Twitter

my latest hobby prj: #vinyl finder – with lazers and #raspberrypi #iot and #nodejs – https://t.co/IGGzQDgUFI https://t.co/7YBE3svGyE

Not only does the app help Valentin find records – he has also set it up to collect listening statistics using the Last.fm API. He plans to add more sophisticated statistics, and is looking into how to automate the entry of the shelf positions into his database.

If you’re interested in the Vinyl Shelf Finder, head over to Valentin’s GitHub to learn more, and to find out about updates he is making to this work in progress.

GUI of Valentin Galea's Vinyl Shelf Finder app

 

Vinyl + Pi

We’ve previously blogged about Mike Smith’s kaleidoscopic Recordshelf build — maybe he and Valentin could team up to create the ultimate, beautiful, practical vinyl-shelving system!

If you listen to lots of LP records and would like to learn about digitising them, check out this Pi-powered project from Mozilla HQ. If, on the other hand, you have a vinyl player you never use, why not make amazing art with it by hacking it into a CNC Wood Burner?

Are you a collector of things common or unusual? Could Raspberry Pi technology help make your collection better? Share your ideas with us in the comments!

The post Vinyl Shelf Finder appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2xIaNHN
via IFTTT

Announcing the 2017-18 European Astro Pi challenge!

Astro Pi is back! Today we’re excited to announce the 2017-18 European Astro Pi challenge in partnership with the European Space Agency (ESA). We are searching for the next generation of space scientists.

YouTube

Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Astro Pi is an annual science and coding competition where student-written code is run on the International Space Station under the oversight of an ESA astronaut. The challenge is open to students from all 22 ESA member countries, including — for the first time — associate members Canada and Slovenia.

The format of the competition is changing slightly this year, and we also have a brand-new non-competitive mission in which participants are guaranteed to have their code run on the ISS for 30 seconds!

Mission Zero

Until now, students have worked on Astro Pi projects in an extra-curricular context and over multiple sessions. For teachers and students who don’t have much spare capacity, we wanted to provide an accessible activity that teams can complete in just one session.

So we came up with Mission Zero for young people no older than 14. To complete it, form a team of two to four people and use our step-by-step guide to help you write a simple Python program that shows your personal message and the ambient temperature on the Astro Pi. If you adhere to a few rules, your code is guaranteed to run in space for 30 seconds, and you’ll receive a certificate showing the exact time period during which your code has run in space. No special hardware is needed for this mission, since everything is done in a web browser.

Mission Zero is open until 26 November 2017! Find out more.

Mission Space Lab

Students aged up to 19 can take part in Mission Space Lab. Form a team of two to six people, and work like real space scientists to design your own experiment. Receive free kit to work with, and write the Python code to carry out your experiment.

There are two themes for Mission Space Lab teams to choose from for their projects:

  • Life in space
    You will make use of Astro Pi Vis (“Ed”) in the European Columbus module. You can use all of its sensors, but you cannot record images or videos.
  • Life on Earth
    You will make use of Astro Pi IR (“Izzy”), which will be aimed towards the Earth through a window. You can use all of its sensors and its camera.

The Astro Pi kit, delivered to Space Lab teams by ESA

If you achieve flight status, your code will be uploaded to the ISS and run for three hours (two orbits). All the data that your code records in space will be downloaded and returned to you for analysis. Then submit a short report on your findings to be in with a chance to win exclusive, money-can’t-buy prizes! You can also submit your project for a Bronze CREST Award.

Mission Space Lab registration is open until 29 October 2017, and accepted teams will continue to spring 2018. Find out more.

How do I get started?

There are loads of materials available that will help you begin your Astro Pi journey — check out the Getting started with the Sense HAT resource and this video explaining how to build the flight case.

Questions?

If you have any questions, please post them in the comments below. We’re standing by to answer them!

The post Announcing the 2017-18 European Astro Pi challenge! appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2xA3uBs
via IFTTT

Dialekt-o-maten vending machine

At some point, many of you will have become exasperated with your AI personal assistant for not understanding you due to your accent – or worse, your fantastic regional dialect! A vending machine from Coca-Cola Sweden turns this issue inside out: the Dialekt-o-maten rewards users with a free soft drink for speaking in a Swedish regional dialect.

The world’s first vending machine where you pay with a dialect!

Thirsty fans along with journalists were invited to try Dialekt-o-maten at Stureplan in central Stockholm. Depending on how well they could pronounce the different phrases in assorted Swedish dialects – they were rewarded an ice cold Coke with that destination on the label.

The Dialekt-o-maten

The machine, which uses a Raspberry Pi, was set up in Stureplan Square in Stockholm. A person presses one of six buttons to choose the regional dialect they want to try out. They then hit ‘record’, and speak into the microphone. The recording is compared to a library of dialect samples, and, if it matches closely enough, voila! — the Dialekt-o-maten dispenses a soft drink for free.

Dialekt-o-maten on the highstreet in Stockholm

Code for the Dialekt-o-maten

The team of developers used the dejavu Python library, as well as custom-written code which responded to new recordings. Carl-Anders Svedberg, one of the developers, said:

Testing the voices and fine-tuning the right level of difficulty for the users was quite tricky. And we really should have had more voice samples. Filtering out noise from the surroundings, like cars and music, was also a small hurdle.

While they wrote the initial software on macOS, the team transferred it to a Raspberry Pi so they could install the hardware inside the Dialekt-o-maten.

Regional dialects

Even though Sweden has only ten million inhabitants, there are more than 100 Swedish dialects. In some areas of Sweden, the local language even still resembles Old Norse. The Dialekt-o-maten recorded how well people spoke the six dialects it used. Apparently, the hardest one to imitate is spoken in Vadstena, and the easiest is spoken in Smögen.

Dialekt-o-maten on Stockholm highstreet

Speech recognition with the Pi

Because of its audio input capabilities, the Raspberry Pi is very useful for building devices that use speech recognition software. One of our favourite projects in this vein is of course Allen Pan’s Real-Life Wizard Duel. We also think this pronunciation training machine by Japanese makers HomeMadeGarbage is really neat. Ideas from these projects and the Dialekt-o-maten could potentially be combined to make a fully fledged language-learning tool!

How about you? Have you used a Raspberry Pi to help you become multilingual? If so, do share your project with us in the comments or via social media.

The post Dialekt-o-maten vending machine appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2hne0mg
via IFTTT

FRED-209 Nerf gun tank

David Pride, known to many of you as an active member of our maker community, has done it again! His FRED-209 build combines a Nerf gun, 3D printing, a Raspberry Pi Zero, and robotics to make one neat remotely controlled Nerf tank.

FRED-209 – 3D printed Raspberry Pi Nerf Tank

Uploaded by David Pride on 2017-09-17.

A Nerf gun for FRED-209

David says he worked on FRED-209 over the summer in order to have some fun with Nerf guns, which weren’t around when he was a kid. He purchased an Elite Stryfe model at a car boot sale, and took it apart to see what made it tick. Then he set about figuring out how to power it with motors and a servo.

Nerf Elite Stryfe components for the FRED-209 Nerf tank of David Pride

To control the motors, David used a ZeroBorg add-on board for the Pi Zero, and he set up a PlayStation 3 controller to pilot his tank. These components were also part of a robot that David entered into the Pi Wars competition, so he had already written code for them.

3D printing for FRED-209

During prototyping for his Nerf tank, which David named after ED-209 from RoboCop, he used lots of eBay loot and several 3D-printed parts. He used the free OpenSCAD software package to design the parts he wanted to print. If you’re a novice at 3D printing, you might find the printing advice he shares in the write-up on his blog very useful.

3D-printed lid of FRED-209 nerf gun tank by David Pride

David found the 3D printing of the 24cm-long lid of FRED-209 tricky

On eBay, David found some cool-looking chunky wheels, but these turned out to be too heavy for the motors. In the end, he decided to use a Rover 5 chassis, which changed the look of FRED-209 from ‘monster truck’ to ‘tank’.

FRED-209 Nerf tank by David Pride

Next step: teach it to use stairs

The final result looks awesome, and David’s video demonstrates that it shoots very accurately as well. A make like this might be a great defensive project for our new apocalypse-themed Pioneers challenge!

Taking FRED-209 further

David will be uploading code and STL files for FRED-209 soon, so keep an eye on his blog or Twitter for updates. He’s also bringing the Nerf tank to the Cotswold Raspberry Jam this weekend. If you’re attending the event, make sure you catch him and try FRED-209 out yourself.

Never one to rest on his laurels, David is already working on taking his build to the next level. He wants to include a web interface controller and a camera, and is working on implementing OpenCV to give the Nerf tank the ability to autonomously detect targets.

Pi Wars 2018

I have a feeling we might get to see an advanced version of David’s project at next year’s Pi Wars!

The 2018 Pi Wars have just been announced. They will take place on 21-22 April at the Cambridge Computer Laboratory, and you have until 3 October to apply to enter the competition. What are you waiting for? Get making! And as always, do share your robot builds with us via social media.

The post FRED-209 Nerf gun tank appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2jMWsEs
via IFTTT

Laser Cookies: a YouTube collaboration

Lasers! Cookies! Raspberry Pi! We’re buzzing with excitement about sharing our latest YouTube video with you, which comes directly from the kitchen of maker Estefannie Explains It All!

Laser-guarded cookies feat. Estefannie Explains It All

Uploaded by Raspberry Pi on 2017-09-18.

Estefannie Explains It All + Raspberry Pi

When Estefannie visited Pi Towers earlier this year, we introduced her to the Raspberry Pi Digital Curriculum and the free resources on our website. We’d already chatted to her via email about the idea of creating a collab video for the Raspberry Pi channel. Once she’d met members of the Raspberry Pi Foundation team and listened to them wax lyrical about the work we do here, she was even more keen to collaborate with us.

Estefannie on Twitter

Ahhhh!!! I still can’t believe I got to hang out and make stuff at the @Raspberry_Pi towers!! Thank you thank you!!

Estefannie returned to the US filled with inspiration for a video for our channel, and we’re so pleased with how awesome her final result is. The video is a super addition to our Raspberry Pi YouTube channel, it shows what our resources can help you achieve, and it’s great fun. You might also have noticed that the project fits in perfectly with this season’s Pioneers challenge. A win all around!

So yeah, we’re really chuffed about this video, and we hope you all like it too!

Estefannie’s Laser Cookies guide

For those of you wanting to try your hand at building your own Cookie Jar Laser Surveillance Security System, Estefannie has provided a complete guide to talk you through it. Here she goes:

First off, you’ll need:

  • 10 lasers
  • 10 photoresistors
  • 10 capacitors
  • 1 Raspberry Pi Zero W
  • 1 buzzer
  • 1 Raspberry Pi Camera Module
  • 12 ft PVC pipes + 4 corners
  • 1 acrylic panel
  • 1 battery pack
  • 8 zip ties
  • tons of cookies

I used the Raspberry Pi Foundation’s Laser trip wire and the Tweeting Babbage resources to get one laser working and to set up the camera and Twitter API. This took me less than an hour, and it was easy, breezy, beautiful, Raspberry Pi.


I soldered ten lasers in parallel and connected ten photoresistors to their own GPIO pins. I didn’t wire them up in series because of sensitivity reasons and to make debugging easier.

Building the frame took a few tries: I actually started with a wood frame, then tried a clear case, and finally realized the best and cleaner solution would be pipes. All the wires go inside the pipes and come out in a small window on the top to wire up to the Zero W.



Using pipes also made the build cheaper, since they were about $3 for 12 ft. Wiring inside the pipes was tricky, and to finish the circuit, I soldered some of the wires after they were already in the pipes.

I tried glueing the lasers to the frame, but the lasers melted the glue and became decalibrated. Next I tried tape, and then I found picture mounting putty. The putty worked perfectly — it was easy to mold a putty base for the lasers and to calibrate and re-calibrate them if needed. Moreover, the lasers stayed in place no matter how hot they got.

Estefannie Explains It All Raspberry Pi Cookie Jar

Although the lasers were not very strong, I still strained my eyes after long hours of calibrating — hence the sunglasses! Working indoors with lasers, sunglasses, and code was weird. But now I can say I’ve done that…in my kitchen.

Using all the knowledge I have shared, this project should take a couple of hours. The code you need lives on my GitHub!

Estefannie Explains It All Raspberry Pi Cookie Jar

“The cookie recipe is my grandma’s, and I am not allowed to share it.”

Estefannie on YouTube

Estefannie made this video for us as a gift, and we’re so grateful for the time and effort she put into it! If you enjoyed it and would like to also show your gratitude, subscribe to her channel on YouTube and follow her on Instagram and Twitter. And if you make something similar, or build anything with our free resources, make sure to share it with us in the comments below or via our social media channels.

The post Laser Cookies: a YouTube collaboration appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2hhMAhI
via IFTTT

Astro Pi upgrades on the International Space Station

In 2015, The Raspberry Pi Foundation built two space-hardened Raspberry Pi units, or Astro Pis, to run student code on board the International Space Station (ISS).

Astro Pi

A space-hardened Raspberry Pi

Astro Pi upgrades

Each school year we run an Astro Pi challenge to find the next generation of space scientists to program them. After the students have their code run in space, any output files are downloaded to ground and returned to them for analysis.

That download process was originally accomplished by an astronaut shutting down the Astro Pi, moving its micro SD card to a crew laptop and copying over the files manually. This used about 20 minutes of precious crew time.

space pi – Create, Discover and Share Awesome GIFs on Gfycat

Watch space pi GIF by sooperdave on Gfycat. Discover more GIFS online on Gfycat

Last year, we passed the qualification to allow the Astro Pi computers to be connected to the Local Area Network (LAN) on board the ISS. This allows us to remotely access them from the ground, upload student code and download the results without having to involve the crew.

This year, we have been preparing a new payload to upgrade the operational capabilities of the Astro Pi units.

The payload consists of the following items:

  • 2 × USB WiFi dongles
  • 5 × optical filters
  • 4 × 32GB micro SD cards

Before anyone asks – no, we’re not going outside into the vacuum of space!

USB WiFi dongle

Currently both Astro Pi units are located in the European Columbus module. They’re even visible on Google Street View (pan down and right)! You can see that we’ve created a bit of a bird’s nest of wires behind them.

Astro Pi

The D-Link DWA-171

The decision to add WiFi capability is partly to clean up the cabling situation, but mainly so that the Astro Pi units can be deployed in ISS locations other than the Columbus module, where we won’t have access to an Ethernet switch.

The Raspberry Pi used in the Astro Pi flight units is the B+ (released in 2014), which does not have any built in wireless connectivity, so we need to use a USB dongle. This particular D-Link dongle was recommended by the European Space Agency (ESA) because a number of other payloads are already using it.

Astro Pi

An Astro Pi unit with WiFi dongle installed

Plans have been made for one of the Astro Pi units to be deployed on an Earth-facing window, to allow Earth-observation student experiments. This is where WiFi connectivity will be required to maintain LAN access for ground control.

Optical filters

With Earth-observation experiments in mind, we are also sending some flexible film optical filters. These are made from the same material as the blue square which is shipped with the Pi NoIR camera module, as noted in this post from when the product was launched. You can find the data sheet here.

Astro Pi

Rosco Roscalux #2007 Storaro Blue

To permit the filter to be easily attached to the Astro Pi unit, the film is laser-cut to friction-fit onto the 12 inner heatsink pins on the base, so that the camera aperture is covered.

Astro Pi

Laser cutting at Makespace

The laser-cutting work was done right here in Cambridge at Makespace by our own Alex Bate, and local artist Diana Probst.

Astro Pi

An Astro Pi with the optical filter installed

32GB micro SD cards

A consequence of running Earth observation experiments is a dramatic increase in the amount of disk space needed. To avoid a high frequency of commanding windows to download imagery to ground, we’re also flying some larger 32GB micro SD cards to replace the current 8GB cards.

Astro Pi

The Samsung Evo MB-MP32DA/EU

This particular type of micro SD card is X-ray proof, waterproof, and resistant to magnetism and heat. Operationally speaking there is no difference, other than the additional available disk space.

Astro Pi

An Astro Pi unit with the new micro SD card installed

The micro SD cards will be flown with a security-hardened version of Raspbian pre-installed.

Crew activities

We have several crew activities planned for when this payload arrives on the ISS. These include the installation of the upgrade items on both Astro Pi units; moving one of the units from Columbus to an earth-facing window (possibly in Node 2); and then moving it back a few weeks later.

Currently it is expected that these activities will be carried out by German ESA astronaut Alexander Gerst who launches to the ISS in November (and will also be the ISS commander for Expedition 57).

Payload launch

We are targeting a January 2018 launch date for the payload. The exact launch vehicle is yet to be determined, but it could be SpaceX CRS 14. We will update you closer to the time.

Questions?

If you have any questions about this payload, how an item works, or why that specific model was chosen, please post them in the comments below, and we’ll try to answer them.

The post Astro Pi upgrades on the International Space Station appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2ymDsjp
via IFTTT

Pioneers: only you can save us

Pioneers, we just received this message through our network — have you seen it?

Can you see me? Only YOU can save us!

Uploaded by Raspberry Pi on 2017-09-14.

Only you can save us

We have no choice, we must help her! If things are as bad as she says they are, our only hope of survival is to work together.

We know you have the skills and imagination required to make something, we’ve seen that in previous Pioneers challenges. That’s why we’re coming directly to you with this — we know you won’t let her down.

What you need to do

We’ve watched back through the recording and pulled out as much information as we can:

  • To save us, you have ten weeks to create something using tech. This means you need to be done on 1 December, or it will be too late!
  • The build you will create needs to help her in the treacherous situation she’s in — what you decide to make is completely up to you.
  • Her call is for those of you aged between 11 and 16 who are based in the UK or Republic of Ireland. You need to work in groups of up to five, and you need to find someone over 17 to act as a mentor and support your project.
  • Any tech will do. We work for the Raspberry Pi Foundation, but this doesn’t mean you need to use a Raspberry Pi. Use anything at all — from microcontrollers to repurposed devices such as laptops and cameras.

To keep in contact with you, it looks like she’s created a form for you to fill in and share your team name and details with her. In return she will trade some items with you — things that will help inspire you in your mission. We’ve managed to find the link to the form: you can fill it in here.

Only you can save us - Raspberry Pi Pioneers

In order to help her (and any others who might still be out there!) to recreate your project, you need to make sure you record your working process. Take photos and footage to document how you build your make, and put together a video to send to her when you’re done making.

If you manage to access social media, you could also share you progress as you go along! Make sure to use #MakeYourIdeas, so that other survivors can see your work.

We’ve assembled some more information on the Pioneers website to create a port of call for you. Check it out, and let us know if you have any questions. We will do whatever we can to help you protect the world.

Good luck, everybody! It’s up to you now.

Only you can save us.

 

 

The post Pioneers: only you can save us appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2xf9Jdv
via IFTTT