Monthly Archives: November 2017

MagPi 64: get started with electronics

Hey folks, Rob here again! You get a double dose of me this month, as today marks the release of The MagPi 64. In this issue we give you a complete electronics starter guide to help you learn how to make circuits that connect to your Raspberry Pi!

The front cover of MagPi 64

MAGPI SIXTY-FOOUUUR!

Wires, wires everywhere!

In the electronics feature, we’ll teach you how to identify different components in circuit diagrams, we’ll explain what they do, and we’ll give you some basic wiring instructions so you can take your first steps. The feature also includes step-by-step tutorials on how to make a digital radio and a range-finder, meaning you can test out your new electronics skills immediately!

Christmas tutorials

Electronics are cool, but what else is in this issue? Well, we have exciting news about the next Google AIY Projects Vision kit, which forgoes audio for images, allowing you to build a smart camera with your Raspberry Pi.

We’ve also included guides on how to create your own text-based adventure game and a kaleidoscope camera. And, just in time for the festive season, there’s a tutorial for making a 3D-printed Pi-powered Christmas tree star. All this in The MagPi 64, along with project showcases, reviews, and much more!

Kaleido Cam

Using a normal web cam or the Raspberry Pi camera produce real time live kaleidoscope effects with the Raspberry Pi. This video shows the normal mode, along with an auto pre-rotate, and a horizontal and vertical flip.

Get The MagPi 64

Issue 64 is available today from WHSmith, Tesco, Sainsbury’s, and Asda. If you live in the US, head over to your local Barnes & Noble or Micro Center in the next few days. You can also get the new issue online from our store, or digitally via our Android and iOS apps. And don’t forget, there’s always the free PDF as well.

Subscribe for free goodies

Want to support the Raspberry Pi Foundation and the magazine, and get some cool free stuff? If you take out a twelve-month print subscription to The MagPi, you’ll get a Pi Zero W, Pi Zero case, and adapter cables absolutely free! This offer does not currently have an end date.

We hope you enjoy this issue!

Nintendo Sixty-FOOOOOOOOOOUR

Brandon gets an n64 for christmas 1998 and gets way too excited inquiries about usage / questions / comments? n64kids@gmail.com © n64kids.com

The post MagPi 64: get started with electronics appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2zBLViJ
via IFTTT

MagPi 64: get started with electronics

Hey folks, Rob here again! You get a double dose of me this month, as today marks the release of The MagPi 64. In this issue we give you a complete electronics starter guide to help you learn how to make circuits that connect to your Raspberry Pi!

The front cover of MagPi 64

MAGPI SIXTY-FOOUUUR!

Wires, wires everywhere!

In the electronics feature, we’ll teach you how to identify different components in circuit diagrams, we’ll explain what they do, and we’ll give you some basic wiring instructions so you can take your first steps. The feature also includes step-by-step tutorials on how to make a digital radio and a range-finder, meaning you can test out your new electronics skills immediately!

Christmas tutorials

Electronics are cool, but what else is in this issue? Well, we have exciting news about the next Google AIY Projects Vision kit, which forgoes audio for images, allowing you to build a smart camera with your Raspberry Pi.

We’ve also included guides on how to create your own text-based adventure game and a kaleidoscope camera. And, just in time for the festive season, there’s a tutorial for making a 3D-printed Pi-powered Christmas tree star. All this in The MagPi 64, along with project showcases, reviews, and much more!

Kaleido Cam

Using a normal web cam or the Raspberry Pi camera produce real time live kaleidoscope effects with the Raspberry Pi. This video shows the normal mode, along with an auto pre-rotate, and a horizontal and vertical flip.

Get The MagPi 64

Issue 64 is available today from WHSmith, Tesco, Sainsbury’s, and Asda. If you live in the US, head over to your local Barnes & Noble or Micro Center in the next few days. You can also get the new issue online from our store, or digitally via our Android and iOS apps. And don’t forget, there’s always the free PDF as well.

Subscribe for free goodies

Want to support the Raspberry Pi Foundation and the magazine, and get some cool free stuff? If you take out a twelve-month print subscription to The MagPi, you’ll get a Pi Zero W, Pi Zero case, and adapter cables absolutely free! This offer does not currently have an end date.

We hope you enjoy this issue!

Nintendo Sixty-FOOOOOOOOOOUR

Brandon gets an n64 for christmas 1998 and gets way too excited inquiries about usage / questions / comments? n64kids@gmail.com © n64kids.com

The post MagPi 64: get started with electronics appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2zBLViJ
via IFTTT

Our brand-new Christmas resources

It’s never too early for Christmas-themed resources — especially when you want to make the most of them in your school or Code Club! So here’s the ever-wonderful Laura Sach with an introduction of our newest festive projects.

A cartoon of people singing Christmas carols - Raspberry Pi Christmas Resources

In the immortal words of Noddy Holder: “it’s Christmaaaaaaasssss!” Well, maybe it isn’t quite Christmas yet, but since the shops have been playing Mariah Carey on a loop since the last pumpkin lantern hit the bargain bin, you’re hopefully well prepared.

To get you in the mood with some festive fun, we’ve put together a selection of seasonal free resources for you. Each project has a difficulty level in line with our Digital Making Curriculum, so you can check which might suit you best. Why not try them out at your local Raspberry Jam, CoderDojo, or Code Club, at school, or even on a cold day at home with a big mug of hot chocolate?

Jazzy jumpers

A cartoon of someone remembering pairs of jumper designs - Raspberry Pi Christmas Resources

Jazzy jumpers (Creator level): as a child in the eighties, you’d always get an embarrassing and probably badly sized jazzy jumper at Christmas from some distant relative. Thank goodness the trend has gone hipster and dreadful jumpers are now cool!

This resource shows you how to build a memory game in Scratch where you must remember the colour and picture of a jazzy jumper before recreating it. How many jumpers can you successfully recall in a row?

Sense HAT advent calendar

A cartoon Sense HAT lit up in the design of a Christmas pudding - Raspberry Pi Christmas Resources

Sense HAT advent calendar (Builder level): put the lovely lights on your Sense HAT to festive use by creating an advent calendar you can open day by day. However, there’s strictly no cheating with this calendar — we teach you how to use Python to detect the current date and prevent would-be premature peekers!

Press the Enter key to open today’s door:

(Note: no chocolate will be dispensed from your Raspberry Pi. Sorry about that.)

Code a carol

A cartoon of people singing Christmas carols - Raspberry Pi Christmas Resources

Code a carol (Developer level): Have you ever noticed how much repetition there is in carols and other songs? This resource teaches you how to break down the Twelve days of Christmas tune into its component parts and code it up in Sonic Pi the lazy way: get the computer to do all the repetition for you!

No musical knowledge required — just follow our lead, and you’ll have yourself a rocking doorbell tune in no time!

Naughty and nice

A cartoon of Santa judging people by their tweets - Raspberry Pi Christmas Resources

Naughty and nice (Maker level): Have you been naughty or nice? Find out by using sentiment analysis on your tweets to see what sort of things you’ve been talking about throughout the year. For added fun, why not use your program on the Twitter account of your sibling/spouse/arch nemesis and report their level of naughtiness to Santa with an @ mention?

raspberry_pi is 65.5 percent NICE, with an accuracy of 0.9046692607003891

It’s Christmaaaaaasssss

With the festive season just around the corner, it’s time to get started on your Christmas projects! Whether you’re planning to run your Christmas lights via a phone app, install a home assistant inside an Elf on a Shelf, or work through our Christmas resources, we would like to see what you make. So do share your festive builds with us on social media, or by posting links in the comments.

The post Our brand-new Christmas resources appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2AiWkUd
via IFTTT

Raspberry Pi clusters come of age

In today’s guest post, Bruce Tulloch, CEO and Managing Director of BitScope Designs, discusses the uses of cluster computing with the Raspberry Pi, and the recent pilot of the Los Alamos National Laboratory 3000-Pi cluster built with the BitScope Blade.

Raspberry Pi cluster

High-performance computing and Raspberry Pi are not normally uttered in the same breath, but Los Alamos National Laboratory is building a Raspberry Pi cluster with 3000 cores as a pilot before scaling up to 40000 cores or more next year.

That’s amazing, but why?

I was asked this question more than any other at The International Conference for High-Performance Computing, Networking, Storage and Analysis in Denver last week, where one of the Los Alamos Raspberry Pi Cluster Modules was on display at the University of New Mexico’s Center for Advanced Research Computing booth.

The short answer to this question is: the Raspberry Pi cluster enables Los Alamos National Laboratory (LANL) to conduct exascale computing R&D.

The Pi cluster breadboard

Exascale refers to computing systems at least 50 times faster than the most powerful supercomputers in use today. The problem faced by LANL and similar labs building these things is one of scale. To get the required performance, you need a lot of nodes, and to make it work, you need a lot of R&D.

However, there’s a catch-22: how do you write the operating systems, networks stacks, launch and boot systems for such large computers without having one on which to test it all? Use an existing supercomputer? No — the existing large clusters are fully booked 24/7 doing science, they cost millions of dollars per year to run, and they may not have the architecture you need for your next-generation machine anyway. Older machines retired from science may be available, but at this scale they cost far too much to use and are usually very hard to maintain.

The Los Alamos solution? Build a “model supercomputer” with Raspberry Pi!

Think of it as a “cluster development breadboard”.

The idea is to design, develop, debug, and test new network architectures and systems software on the “breadboard”, but at a scale equivalent to the production machines you’re currently building. Raspberry Pi may be a small computer, but it can run most of the system software stacks that production machines use, and the ratios of its CPU speed, local memory, and network bandwidth scale proportionately to the big machines, much like an architect’s model does when building a new house. To learn more about the project, see the news conference and this interview with insideHPC at SC17.

Traditional Raspberry Pi clusters

Like most people, we love a good cluster! People have been building them with Raspberry Pi since the beginning, because it’s inexpensive, educational, and fun. They’ve been built with the original Pi, Pi 2, Pi 3, and even the Pi Zero, but none of these clusters have proven to be particularly practical.

That’s not stopped them being useful though! I saw quite a few Raspberry Pi clusters at the conference last week.

One tiny one that caught my eye was from the people at openio.io, who used a small Raspberry Pi Zero W cluster to demonstrate their scalable software-defined object storage platform, which on big machines is used to manage petabytes of data, but which is so lightweight that it runs just fine on this:

Raspberry Pi Zero cluster

There was another appealing example at the ARM booth, where the Berkeley Labs’ singularity container platform was demonstrated running very effectively on a small cluster built with Raspberry Pi 3s.

Raspberry Pi 3 cluster demo at a conference stall

My show favourite was from the Edinburgh Parallel Computing Center (EPCC): Nick Brown used a cluster of Pi 3s to explain supercomputers to kids with an engaging interactive application. The idea was that visitors to the stand design an aircraft wing, simulate it across the cluster, and work out whether an aircraft that uses the new wing could fly from Edinburgh to New York on a full tank of fuel. Mine made it, fortunately!

Raspberry Pi 3 cluster demo at a conference stall

Next-generation Raspberry Pi clusters

We’ve been building small-scale industrial-strength Raspberry Pi clusters for a while now with BitScope Blade.

When Los Alamos National Laboratory approached us via HPC provider SICORP with a request to build a cluster comprising many thousands of nodes, we considered all the options very carefully. It needed to be dense, reliable, low-power, and easy to configure and to build. It did not need to “do science”, but it did need to work in almost every other way as a full-scale HPC cluster would.

Some people argue Compute Module 3 is the ideal cluster building block. It’s very small and just as powerful as Raspberry Pi 3, so one could, in theory, pack a lot of them into a very small space. However, there are very good reasons no one has ever successfully done this. For a start, you need to build your own network fabric and I/O, and cooling the CM3s, especially when densely packed in a cluster, is tricky given their tiny size. There’s very little room for heatsinks, and the tiny PCBs dissipate very little excess heat.

Instead, we saw the potential for Raspberry Pi 3 itself to be used to build “industrial-strength clusters” with BitScope Blade. It works best when the Pis are properly mounted, powered reliably, and cooled effectively. It’s important to avoid using micro SD cards and to connect the nodes using wired networks. It has the added benefit of coming with lots of “free” USB I/O, and the Pi 3 PCB, when mounted with the correct air-flow, is a remarkably good heatsink.

When Gordon announced netboot support, we became convinced the Raspberry Pi 3 was the ideal candidate when used with standard switches. We’d been making smaller clusters for a while, but netboot made larger ones practical. Assembling them all into compact units that fit into existing racks with multiple 10 Gb uplinks is the solution that meets LANL’s needs. This is a 60-node cluster pack in testing in the BitScope Lab with a pair of Ubiquity-managed switches:

60-node Raspberry Pi cluster pack

Two of these packs, built with Blade Quattro, and one smaller one comprising 30 nodes, built with Blade Duo, are the components of the Cluster Module we exhibited at the show. Five of these modules are going into Los Alamos National Laboratory for their pilot as I write this.

Bruce Tulloch at a conference stand with a demo of the Raspberry Pi cluster for LANL

It’s not only research clusters like this for which Raspberry Pi is well suited. You can build very reliable local cloud computing and data centre solutions for research, education, and even some industrial applications. You’re not going to get much heavy-duty science, big data analytics, AI, or serious number crunching done on one of these, but it is quite amazing to see just how useful Raspberry Pi clusters can be for other purposes, whether it’s software-defined networks, lightweight MaaS, SaaS, PaaS, or FaaS solutions, distributed storage, edge computing, industrial IoT, and of course, education in all things cluster and parallel computing. For one live example, check out Mythic Beasts’ educational compute cloud, built with Raspberry Pi 3.

For more information about Raspberry Pi clusters, drop by BitScope Clusters.

I’ll read and respond to your thoughts in the comments below this post too.

Editors note:

Here is a photo of Bruce wearing a jetpack. Cool, right?!

Bruce Tulloch wearing a jetpack

The post Raspberry Pi clusters come of age appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2zwPSW4
via IFTTT

Decrypt messages and calculate Pi: new OctaPi projects

Back in July, we collaborated with GCHQ to bring you two fantastic free resources: the first showed you how to build an OctaPi, a Raspberry Pi cluster computer. The second showed you how to use the cluster to learn about public key cryptography. Since then, we and GCHQ have been hard at work, and now we’re presenting two more exciting projects to make with your OctaPi!

A happy cartoon octopus holds a Raspberry Pi in each tentacle.

Maker level

These new free resources are at the Maker level of the Raspberry Pi Foundation Digital Making Curriculum — they are intended for learners with a fair amount of experience, introducing them to some intriguing new concepts.

Whilst both resources make use of the OctaPi in their final steps, you can work through the majority of the projects on any computer running Python 3.

Calculate Pi

A cartoon octopus is struggling to work out the value of Pi

3.14159…ummm…

Calculating Pi teaches you two ways of calculating the value of Pi with varying accuracy. Along the way, you’ll also learn how computers store numbers with a fractional part, why your computer can limit how accurate your calculation of Pi is, and how to distribute the calculation across the OctaPi cluster.

Brute-force Enigma

A cartoon octopus tries to break an Enigma code

Decrypt the message before time runs out!

Brute-force Enigma sends you back in time to take up the position of a WWII Enigma operator. Learn how to encrypt and decrypt messages using an Enigma machine simulated entirely in Python. Then switch roles and become a Bletchley Park code breaker — except this time, you’ve got a cluster computer on your side! You will use the OctaPi to launch a brute-force crypt attack on an Enigma-encrypted message, and you’ll gain an appreciation of just how difficult this decryption task was without computers.

Our own OctaPi

A GIF of the OctaPi cluster computer at Pi Towers
GCHQ has kindly sent us a fully assembled, very pretty OctaPi of our own to play with at Pi Towers — it even has eight snazzy Unicorn HATs which let you display light patterns and visualize simulations! Visitors of the Raspberry Jam at Pi Towers can have a go at running their own programs on the OctaPi, while we’ll be using it to continue to curate more free resources for you.

The post Decrypt messages and calculate Pi: new OctaPi projects appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2zqZqSl
via IFTTT

HackSpace magazine #1 is out now!

HackSpace magazine is finally here! Grab your copy of the new magazine for makers today, and try your hand at some new, exciting skills.

HackSpace magazine issue 1 cover

What is HackSpace magazine?

HackSpace magazine is the newest publication from the team behind The MagPi. Chock-full of amazing projects, tutorials, features, and maker interviews, HackSpace magazine brings together the makers of the world every month, with you — the community — providing the content.

HackSpace magazine is out now!

The new magazine for the modern maker is out now! Learn more at https://hsmag.cc HackSpace magazine is the new monthly magazine for people who love to make things and those who want to learn. Grab some duct tape, fire up a microcontroller, ready a 3D printer and hack the world around you!

Inside issue 1

Fancy smoking bacon with your very own cold smoker? How about protecting your home with a mini trebuchet for your front lawn? Or maybe you’d like to learn from awesome creator Becky Stern how to get paid for making the things you love? No matter whether it’s handheld consoles, robot prosthetics, Christmas projects, or, er, duct tape — whatever your maker passion, issue 1 is guaranteed to tick your boxes!



HackSpace magazine is packed with content from every corner of the maker world: from welding to digital making, and from woodwork to wearables. And whatever you enjoy making, we want to see it! So as you read through this first issue, imagine your favourite homemade projects on our pages, then make that a reality by emailing us the details via hackspace@raspberrypi.org.

Get your copy

You can grab issue 1 of HackSpace magazine right now from WHSmith, Tesco, Sainsbury’s, and independent newsagents. If you live in the US, check out your local Barnes & Noble, Fry’s, or Micro Center next week. We’re also shipping to stores in Australia, Hong Kong, Canada, Singapore, Belgium and Brazil — ask your local newsagent whether they’ll be getting HackSpace magazine. Alternatively, you can get the new issue online from our store, or digitally via our Android or iOS apps. And don’t forget, as with all our publications, a free PDF of HackSpace magazine is available from release day.

We’re also offering money-saving subscriptions — find details on the the magazine website. And if you’re a subscriber of The MagPi, your free copy of HackSpace magazine is on its way, with details of a super 50% discount on subscriptions! Could this be the Christmas gift you didn’t know you wanted?

Share your makes and thoughts

Make sure to follow HackSpace magazine on Facebook and Twitter, or email the team at hackspace@raspberrypi.org to tell us about your projects and share your thoughts about issue 1. We’ve loved creating this new magazine for the maker community, and we hope you enjoy it as much as we do.

The post HackSpace magazine #1 is out now! appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2zxckCr
via IFTTT

What do you want your button to do?

Here at Raspberry Pi, we know that getting physical with computing is often a catalyst for creativity. Building a simple circuit can open up a world of making possibilities! This ethos of tinkering and invention is also being used in the classroom to inspire a whole new generation of makers too, and here is why.

The all-important question

Physical computing provides a great opportunity for creative expression: the button press! By explaining how a button works, how to build one with a breadboard attached to computer, and how to program the button to work when it’s pressed, you can give learners young and old all the conceptual skills they need to build a thing that does something. But what do they want their button to do? Have you ever asked your students or children at home? I promise it will be one of the most mindblowing experiences you’ll have if you do.

A button. A harmless, little arcade button.

Looks harmless now, but put it into the hands of a child and see what happens!

Amy will want her button to take a photo, Charlie will want his button to play a sound, Tumi will want her button to explode TNT in Minecraft, Jack will want their button to fire confetti out of a cannon, and James Robinson will want his to trigger silly noises (doesn’t he always?)! Idea generation is the inherent gift that every child has in abundance. As educators and parents, we’re always looking to deeply engage our young people in the subject matter we’re teaching, and they are never more engaged than when they have an idea and want to implement it. Way back in 2012, I wanted my button to print geeky sayings:

Geek Gurl Diaries Raspberry Pi Thermal Printer Project Sneak Peek!

A sneak peek at the finished Geek Gurl Diaries ‘Box of Geek’. I’ve been busy making this for a few weeks with some help from friends. Tutorial to make your own box coming soon, so keep checking the Geek Gurl Diaries Twitter, facebook page and channel.

What are the challenges for this approach in education?

Allowing this kind of free-form creativity and tinkering in the classroom obviously has its challenges for teachers, especially those confined to rigid lesson structures, timings, and small classrooms. The most common worry I hear from teachers is “what if they ask a question I can’t answer?” Encouraging this sort of creative thinking makes that almost an inevitability. How can you facilitate roughly 30 different projects simultaneously? The answer is by using those other computational and transferable thinking skills:

  • Problem-solving
  • Iteration
  • Collaboration
  • Evaluation

Clearly specifying a problem, surveying the tools available to solve it (including online references and external advice), and then applying them to solve the problem is a hugely important skill, and this is a great opportunity to teach it.

A girl plays a button reaction game at a Raspberry Pi event

Press ALL the buttons!

Hands-off guidance

When we train teachers at Picademy, we group attendees around themes that have come out of the idea generation session. Together they collaborate on an achievable shared goal. One will often sketch something on a whiteboard, decomposing the problem into smaller parts; then the group will divide up the tasks. Each will look online or in books for tutorials to help them with their step. I’ve seen this behaviour in student groups too, and it’s very easy to facilitate. You don’t need to be the resident expert on every project that students want to work on.

The key is knowing where to guide students to find the answers they need. Curating online videos, blogs, tutorials, and articles in advance gives you the freedom and confidence to concentrate on what matters: the learning. We have a number of physical computing projects that use buttons, linked to our curriculum for learners to combine inputs and outputs to solve a problem. The WhooPi cushion and GPIO music box are two of my favourites.

A Raspberry Pi and button attached to a computer display

Outside of formal education, events such as Raspberry Jams, CoderDojos, CAS Hubs, and hackathons are ideal venues for seeking and receiving support and advice.

Cross-curricular participation

The rise of the global maker movement, I think, is in response to abstract concepts and disciplines. Children are taught lots of concepts in isolation that aren’t always relevant to their lives or immediate environment. Digital making provides a unique and exciting way of bridging different subject areas, allowing for cross-curricular participation. I’m not suggesting that educators should throw away all their schemes of work and leave the full direction of the computing curriculum to students. However, there’s huge value in exposing learners to the possibilities for creativity in computing. Creative freedom and expression guide learning, better preparing young people for the workplace of tomorrow.

So…what do you want your button to do?

Hello World

Learn more about today’s subject, and read further articles regarding computer science in education, in Hello World magazine issue 1.

Read Hello World issue 1 for more…

UK-based educators can subscribe to Hello World to receive a hard copy delivered for free to their doorstep, while the PDF is available for free to everyone via the Hello World website.

The post What do you want your button to do? appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2jMZfOo
via IFTTT

Ultimate 3D printer control with OctoPrint

Control and monitor your 3D printer remotely with a Raspberry Pi and OctoPrint.

Timelapse of OctoPrint Ornament

Printed on a bq Witbox STL file can be found here: http://ift.tt/2z9uJBi OctoPrint is located here: http://ift.tt/1zoHiqd

3D printing

Whether you have a 3D printer at home or use one at your school or local makerspace, it’s fair to assume you’ve had a failed print or two in your time. Filament knotting or running out, your print peeling away from the print bed — these are common issues for all 3D printing enthusiasts, and they can be costly if they’re discovered too late.

OctoPrint

OctoPrint is a free open-source software, created and maintained by Gina Häußge, that performs a multitude of useful 3D printing–related tasks, including remote control of your printer, live video, and data collection.

The OctoPrint logo

Control and monitoring

To control the print process, use OctoPrint on a Raspberry Pi connected to your 3D printer. First, ensure a safe uninterrupted run by using the software to restrict who can access the printer. Then, before starting your print, use the web app to work on your STL file. The app also allows you to reposition the print head at any time, as well as pause or stop printing if needed.

Live video streaming

Since OctoPrint can stream video of your print as it happens, you can watch out for any faults that may require you to abort and restart. Proud of your print? Record the entire process from start to finish and upload the time-lapse video to your favourite social media platform.

OctoPrint software graphic user interface screenshot

Data capture

Octoprint records real-time data, such as the temperature, giving you another way to monitor your print to ensure a smooth, uninterrupted process. Moreover, the records will help with troubleshooting if there is a problem.

OctoPrint software graphic user interface screenshot

Print the Millenium Falcon

OK, you can print anything you like. However, this design definitely caught our eye this week.

3D-Printed Fillenium Malcon (Timelapse)

This is a Timelapse of my biggest print project so far on my own designed/built printer. It’s 500x170x700(mm) and weights 3 Kilograms of Filament.

You can support the work of Gina and OctoPrint by visiting her Patreon account and following OctoPrint on Twitter, Facebook, or G+. And if you’ve set up a Raspberry Pi to run OctoPrint, or you’ve created some cool Pi-inspired 3D prints, make sure to share them with us on our own social media channels.

The post Ultimate 3D printer control with OctoPrint appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2Bc5PSL
via IFTTT

Prepare to run a Code Club on FutureLearn

Prepare to run a Code Club with our newest free online course, available now on FutureLearn!

FutureLearn: Prepare to Run a Code Club

Ready to launch! Our free FutureLearn course ‘Prepare to Run a Code Club’ starts next week and you can sign up now: http://ift.tt/2AfFBS5

Code Club

As of today, more than 10000 Code Clubs run in 130 countries, delivering free coding opportunities to approximately 150000 children across the globe.

A child absorbed in a task at a Code Club

As an organisation, Code Club provides free learning resources and training materials to supports the ever-growing and truly inspiring community of volunteers and educators who set up and run Code Clubs.

FutureLearn

Today we’re launching our latest free online course on FutureLearn, dedicated to training and supporting new Code Club volunteers. It will give you practical guidance on all things Code Club, as well as a taste of beginner programming!

Split over three weeks and running for 3–4 hours in total, the course provides hands-on advice and tips on everything you need to know to run a successful, fun, and educational club.

“Week 1 kicks off with advice on how to prepare to start a Code Club, for example which hardware and software are needed. Week 2 focusses on how to deliver Code Club sessions, with practical tips on helping young people learn and an easy taster coding project to try out. In the final week, the course looks at interesting ideas to enrich and extend club sessions.”
— Sarah Sherman-Chase, Code Club Participation Manager

The course is available wherever you live, and it is completely free — sign up now!

If you’re already a volunteer, the course will be a great refresher, and a chance to share your insights with newcomers. Moreover, it is also useful for parents and guardians who wish to learn more about Code Club.

Your next step

Interested in learning more? You can start the course today by visiting FutureLearn. And to find out more about Code Clubs in your country, visit Code Club UK or Code Club International.

Code Club partners from across the globe gathered together for a group photo at the International Meetup

We love hearing your Code Club stories! If you’re a volunteer, are in the process of setting up a club, or are inspired to learn more, share your story in the comments below or via social media, making sure to tag @CodeClub and @CodeClubWorld.

You might also be interested in our other free courses on the FutureLearn platform, including Teaching Physical Computing with Raspberry Pi and Python and Teaching Programming in Primary Schools.

 

The post Prepare to run a Code Club on FutureLearn appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2zTrOzW
via IFTTT

Pip: digital creation in your pocket from Curious Chip

Get your hands on Pip, the handheld Raspberry Pi–based device for aspiring young coders and hackers from Curious Chip.

A GIF of Pip - Curious Chip - Pip handheld device - Raspberry Pi

Pip is a handheld gaming console from Curios Chip which you can now back on Kickstarter. Using the Raspberry Pi Compute Module 3, Pip allows users to code, hack, and play wherever they are.

We created Pip so that anyone can tinker with technology. From beginners to those who know more — Pip makes it easy, simple, and fun!

For gaming

Pip’s smart design may well remind you of a certain handheld gaming console released earlier this year. With its central screen and detachable side controllers, Pip has a size and shape ideal for gaming.

A GIF of Pip - Curious Chip - Pip handheld device - Raspberry Pi

Those who have used a Raspberry Pi with the Raspbian OS might be familiar with Minecraft Pi, a variant of the popular Minecraft game created specifically for Pi users to play and hack for free. Users of Pip will be able to access Minecraft Pi from the portable device and take their block-shaped creations with them wherever they go.

And if that’s not enough, Pip’s Pi brain allows coders to create their own games using Scratch, in addition to giving access a growing library of games in Curious Chip’s online arcade.

Digital making

Pip’s GPIO pins are easily accessible, so that you can expand upon your digital making skills with physical computing projects. Grab your Pip and a handful of jumper leads, and you will be able to connect and control components such as lights, buttons, servomotors, and more!

A smiling girl with Pip and a laptop

You can also attach any of the range of HAT add-on boards available on the market, such as our own Sense HAT, or ones created by Pimoroni, Adafruit, and others. And if you’re looking to learn a new coding language, you’re in luck: Pip supports Python, HTML/CSS, JavaScript, Lua, and PHP.

Maker Pack and add-ons

Backers can also pledge their funds for additional hardware, such as the Maker Pack, an integrated camera, or a Pip Breadboard Kit.

PipHAT and Breadboard add-ons - Curious Chip - Pip handheld device - Raspberry Pi

The breadboard and the optional PipHAT are also compatible with any Raspberry Pi 2 and 3. Nice!

Curiosity from Curious Chip

Users of Pip can program their device via Curiosity, a tool designed specifically for this handheld device.

Pip’s programming tool is called Curiosity, and it’s hosted on Pip itself and accessed via WiFi from any modern web browser, so there’s no software to download and install. Curiosity allows Pip to be programmed using a number of popular programming languages, including JavaScript, Python, Lua, PHP, and HTML5. Scratch-inspired drag-and-drop block programming is also supported with our own Google Blockly–based editor, making it really easy to access all of Pip’s built-in functionality from a simple, visual programming language.

Back the project

If you’d like to back Curious Chip and bag your own Pip, you can check out their Kickstarter page here. And if you watch their promo video closely, you may see a familiar face from the Raspberry Pi community.

Are you planning on starting your own Raspberry Pi-inspired crowd-funded campaign? Then be sure to tag us on social media. We love to see what the community is creating for our little green (or sometimes blue) computer.

The post Pip: digital creation in your pocket from Curious Chip appeared first on Raspberry Pi.

from Raspberry Pi http://ift.tt/2zPNk6i
via IFTTT